Perfect Brownies¶
You've developed a video monitoring system for ovens that alerts you when a batch of brownies is cooked to perfection. Through a delicious validation procedure, you've acquired the following predictions and truths.
import pandas as pd
df = pd.DataFrame({
'yhat': [0.32, 0.65, 0.16, 0.1, 0.1, 0.78, 0.5, 0.03],
'y': [True, True, False, False, False, True, False, True]
})
print(df)
# yhat y
# 0 0.32 True
# 1 0.65 True
# 2 0.16 False
# 3 0.10 False
# 4 0.10 False
# 5 0.78 True
# 6 0.50 False
# 7 0.03 True
df <- data.frame(
yhat = c(0.32, 0.65, 0.16, 0.1, 0.1, 0.78, 0.5, 0.03),
y = c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE)
)
print(df)
# yhat y
# 1 0.32 TRUE
# 2 0.65 TRUE
# 3 0.16 FALSE
# 4 0.10 FALSE
# 5 0.10 FALSE
# 6 0.78 TRUE
# 7 0.50 FALSE
# 8 0.03 TRUE
Calculate the precision and recall of your model using a prediction threshold of 0.5. That is, assume your model
predicts True when yhat >= 0.5
.